Author:
Besova Margarita,Kachalov Vasiliy
Abstract
Introduced by S.A. Lomov, the concept of a pseudoanalytic (pseudoholomorphic) solution laid the foundation for the development of the singular perturbation analytical theory. In order for this concept to work in case of linear problems, an apparatus for the theory of exponential type vector spaces was developed. When considering nonlinear singularly perturbed problems, an algebraic approach is currently used. This approval is based on the properties of algebra homomorphisms for holomorphic functions with various numbers of variables, as a result of which it is possible to obtain pseudoholomorphic solutions. In this paper, formally singularly perturbed equations are considered in topological algebras, which allows the authors to formulate the main concepts of the singular perturbation analytical theory from the standpoint of maximal generality.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献