Abstract
The questions of solvability of a nonlocal inverse boundary value problem for a mixed pseudohyperbolic-pseudoelliptic integro-differential equation with spectral parameters are considered. Using the method of the Fourier series, a system of countable systems of ordinary integro-differential equations is obtained. To determine arbitrary integration constants, a system of algebraic equations is obtained. From this system regular and irregular values of the spectral parameters were calculated. The unique solvability of the inverse boundary value problem for regular values of spectral parameters is proved. For irregular values of spectral parameters is established a criterion of existence of an infinite set of solutions of the inverse boundary value problem. The results are formulated as a theorem.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献