Abstract
Sentiment analysis to characterize the properties of Bitcoin prices and their forecasting is here developed thanks to the capability of the Fuzzy Transform (F-transform for short) to capture stylized facts and mutual connections between time series with different natures. The recently proposed Lp-norm F-transform is a powerful and flexible methodology for data analysis, non-parametric smoothing and for fitting and forecasting. Its capabilities are illustrated by empirical analyses concerning Bitcoin prices and Google Trend scores (six years of daily data): we apply the (inverse) F-transform to both time series and, using clustering techniques, we identify stylized facts for Bitcoin prices, based on (local) smoothing and fitting F-transform, and we study their time evolution in terms of a transition matrix. Finally, we examine the dependence of Bitcoin prices on Google Trend scores and we estimate short-term forecasting models; the Diebold–Mariano (DM) test statistics, applied for their significance, shows that sentiment analysis is useful in short-term forecasting of Bitcoin cryptocurrency.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献