Abstract
We give a geometrical proof of Komlós’ theorem for sequences of random variables with values in super-reflexive Banach space. Our approach is inspired by the elementary proof given by Guessous in 1996 for the Hilbert case and uses some geometric properties of smooth spaces.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献