Optimal Water Management in Agro-Industrial Districts: An Energy Hub’s Case Study in the Southeast of Spain

Author:

Ramos-Teodoro JerónimoORCID,Gil Juan D.ORCID,Roca LidiaORCID,Rodríguez FranciscoORCID,Berenguel ManuelORCID

Abstract

In this work, the optimal management of the water grid belonging to a pilot agro-industrial district, based on greenhouse cultivation, is analyzed. Different water supply plants are considered in the district, some of them using renewable energies as power sources, i.e., a solar thermal desalination plant and a nanofiltration facility powered up by a photovoltaic field. Moreover, the trade with the water public utility network is also taken into account. As demanding agents, a greenhouse and an office building are contemplated. Due to the different water necessities, demand profiles, and the heterogeneous nature of the different plants considered as supplier agents, the management of the whole plant is not trivial. In this way, an algorithm based on the energy hubs approach, which takes into account economic terms and the optimal use of the available resources in its formulation, is proposed for the pilot district with a cropping area of 616 m2. Simulation results are provided in order to evidence the benefits of the proposed technique in two cases: Case 1 considers the flexible operation of the desalination plant, whereas in Case 2 the working conditions are forced to equal the plant’s maximum capacity (Case 2). A flexible operation results in a weekly improvement of 4.68% in profit, an optimized use of the desalination plant, and a reduction of the consumption of water from the public grid by 58.1%.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Universidad de Almería

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3