Classification and Analysis of Optimization Techniques for Integrated Energy Systems Utilizing Renewable Energy Sources: A Review for CHP and CCHP Systems

Author:

Bagherian Mohammad Ali,Mehranzamir KamyarORCID,Pour Amin BeiranvandORCID,Rezania ShahabaldinORCID,Taghavi Elham,Nabipour-Afrouzi Hadi,Dalvi-Esfahani Mohammad,Alizadeh Seyed Morteza

Abstract

Energy generation and its utilization is bound to increase in the following years resulting in accelerating depletion of fossil fuels, and consequently, undeniable damages to our environment. Over the past decade, despite significant efforts in renewable energy realization and developments for electricity generation, carbon dioxide emissions have been increasing rapidly. This is due to the fact that there is a need to go beyond the power sector and target energy generation in an integrated manner. In this regard, energy systems integration is a concept that looks into how different energy systems, or forms, can connect together in order to provide value for consumers and producers. Cogeneration and trigeneration are the two most well established technologies that are capable of producing two or three different forms of energy simultaneously within a single system. Integrated energy systems make for a very strong proposition since it results in energy saving, fuel diversification, and supply of cleaner energy. Optimization of such systems can be carried out using several techniques with regards to different objective functions. In this study, a variety of optimization methods that provides the possibility of performance improvements, with or without presence of constraints, are demonstrated, pinpointing the characteristics of each method along with detailed statistical reports. In this context, optimization techniques are classified into two primary groups including unconstrained optimization and constrained optimization techniques. Further, the potential applications of evolutionary computing in optimization of Integrated Energy Systems (IESs), particularly Combined Heat and Power (CHP) and Combined Cooling, Heating, and Power (CCHP), utilizing renewable energy sources are grasped and reviewed thoroughly. It was illustrated that the employment of classical optimization methods is fading out, replacing with evolutionary computing techniques. Amongst modern heuristic algorithms, each method has contributed more to a certain application; while the Genetic Algorithm (GA) was favored for thermoeconomic optimization, Particle Swarm Optimization (PSO) was mostly applied for economic improvements. Given the mathematical nature and constraint satisfaction property of Mixed-Integer Linear Programming (MILP), this method is gaining prominence for scheduling applications in energy systems.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference180 articles.

1. A comprehensive review on renewable energy integration for combined heat and power production

2. Whole-energy system models: The advisors for the energy transition

3. Renewables—Global Energy Review 2020—Analysishttps://www.iea.org/reports/global-energy-review-2020/renewables

4. Global Energy and CO2 Emissions in 2020—Global Energy Review 2020—Analysishttps://www.iea.org/reports/global-energy-review-2020/global-energy-and-co2-emissions-in-2020

5. Renewable Heat—Renewables 2020—Analysishttps://www.iea.org/reports/renewables-2020/renewable-heat

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3