Climatic–Environmental Effects of Aerosols and Their Sensitivity to Aerosol Mixing States in East Asia in Winter

Author:

Gao Yiman,Zhuang BingliangORCID,Wang Tijian,Chen Huimin,Li Shu,Wei Wen,Lin Huijuan,Li Mengmeng

Abstract

To establish the direct climatic and environmental effect of anthropogenic aerosols in East Asia in winter under external, internal, and partial internal mixing (EM, IM and PIM) states, a well-developed regional climate–chemical model RegCCMS is used by carrying out sensitive numerical simulations. Different aerosol mixing states yield different aerosol optical and radiative properties. The regional averaged EM aerosol single scattering albedo is approximately 1.4 times that of IM. The average aerosol effective radiative forcing in the atmosphere ranges from −0.35 to +1.40 W/m2 with increasing internal mixed aerosols. Due to the absorption of black carbon aerosol, lower air temperatures are increased, which likely weakens the EAWM circulations and makes the atmospheric boundary more stable. Consequently, substantial accumulations of aerosols further appear in most regions of China. This type of interaction will be intensified when more aerosols are internally mixed. Overall, the aerosol mixing states may be important for regional air pollution and climate change assessments. The different aerosol mixing states in East Asia in winter will result in a variation from 0.04 to 0.11 K for the averaged lower air temperature anomaly and from approximately 0.45 to 2.98 μg/m3 for the aerosol loading anomaly, respectively, due to the different mixing aerosols.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3