2D Phase-Based RFID Localization for On-Site Landslide Monitoring

Author:

Charléty ArthurORCID,Le Breton Mathieu,Larose Eric,Baillet Laurent

Abstract

Passive radio-frequency identification (RFID) was recently used to monitor landslide displacement at a high spatio-temporal resolution but only measured 1D displacement. This study demonstrates the tracking of 2D displacements, using an array of antennas connected to an RFID interrogator. Ten tags were deployed on a landslide for 12 months and 2D relative localization was performed using a phase-of-arrival approach. A period of landslide activity was monitored through RFID and displacements were confirmed by reference measurements. The tags showed displacements of up to 1.2 m over the monitored period. The centimeter-scale accuracy of the technique was confirmed experimentally and theoretically for horizontal localization by developing a measurement model that included antenna and tag positions, as well as multipath interference. This study confirms that 2D landslide displacement tracking with RFID is feasible at relatively low instrumental and maintenance cost.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kalman Smoothing for better RFID Landslide Monitoring;2023 31st European Signal Processing Conference (EUSIPCO);2023-09-04

2. Increased ranging accuracy of RFID tags in ETSI regions using 53MHz wide dual bands;2023 IEEE 13th International Conference on RFID Technology and Applications (RFID-TA);2023-09-04

3. Tomography of the quantity of grass using RFID propagation-based sensing;2023 IEEE 13th International Conference on RFID Technology and Applications (RFID-TA);2023-09-04

4. A High-Precision 3D Target Perception Algorithm Based on a Mobile RFID Reader and Double Tags;Remote Sensing;2023-08-07

5. Monitoring snow water equivalent using the phase of RFID signals;The Cryosphere;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3