Infrared Small-Target Detection Based on Radiation Characteristics with a Multimodal Feature Fusion Network

Author:

Wu Di,Cao Lihua,Zhou Pengji,Li Ning,Li Yi,Wang Dejun

Abstract

Infrared small-target detection has widespread influences on anti-missile warning, precise weapon guidance, infrared stealth and anti-stealth, military reconnaissance, and other national defense fields. However, small targets are easily submerged in background clutter noise and have fewer pixels and shape features. Furthermore, random target positions and irregular motion can lead to target detection being carried out in the whole space–time domain. This could result in a large amount of calculation, and the accuracy and real-time performance are difficult to be guaranteed. Therefore, infrared small-target detection is still a challenging and far-reaching research hotspot. To solve the above problem, a novel multimodal feature fusion network (MFFN) is proposed, based on morphological characteristics, infrared radiation, and motion characteristics, which could compensate for the deficiency in the description of single modal characteristics of small targets and improve the recognition precision. Our innovations introduced in the paper are addressed in the following three aspects: Firstly, in the morphological domain, we propose a network with the skip-connected feature pyramid network (SCFPN) and dilated convolutional block attention module integrated with Resblock (DAMR) introduced to the backbone, which is designed to improve the feature extraction ability for infrared small targets. Secondly, in the radiation characteristic domain, we propose a prediction model of atmospheric transmittance based on deep neural networks (DNNs), which predicts the atmospheric transmittance effectively without being limited by the complex environment to improve the measurement accuracy of radiation characteristics. Finally, the dilated convolutional-network-based bidirectional encoder representation from a transformers (DC-BERT) structure combined with an attention mechanism is proposed for the feature extraction of radiation and motion characteristics. Finally, experiments on our self-established optoelectronic equipment detected dataset (OEDD) show that our method is superior to eight state-of-the-art algorithms in terms of the accuracy and robustness of infrared small-target detection. The comparative experimental results of four kinds of target sequences indicate that the average recognition rate Pavg is 92.64%, the mean average precision (mAP) is 92.01%, and the F1 score is 90.52%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference77 articles.

1. Infrared Small Maritime Target Detection Based on Integrated Target Saliency Measure

2. Light-Head R-CNN: In Defense of Two-Stage Object Detector;Li;arXiv,2017

3. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

4. SPPNet: An approach for real-time encrypted traffic classification using deep learning;Meslet-Millt;Proceedings of the IEEE Global Communications Conference (GLOBECOM),2021

5. Fast R⁃CNN;Girshick;arXiv,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3