Direction Estimation of Aerial Image Object Based on Neural Network

Author:

Zhang HongyunORCID,Liu Jin

Abstract

Due to the inherent periodicity of the angle, the direction of the object detected by the current rotating object detection algorithm is fuzzy. In order to solve this problem, this paper proposes a rotating object direction estimation method based on a neural network, which determines the unique direction of the object by predicting the direction vector of the object. Firstly, we use the two components (sin θ, cos θ) of the direction vector and the length and width parameters of the object to express the object model. Secondly, we construct a neural network model to predict the parameters used to express the object model. However, there is a constraint that the sum of the squares of the two components of the direction vector of the object is equal to 1. Because each output element of the neural network is independent, it is difficult to learn the constrained data between such neurons. Therefore, the function transformation model is designed, and the network transformation layer is added. Finally, affine transformation is used to transform the object parameters and carry out regression calculation, so as to detect the object and determine the direction of the object at the same time. This paper uses three sets of data to carry out the experiment, which are DOTA 1.5, HRSC, and UCAS-AOD data sets. It can be seen from the experimental results that for the object with correct ground truth, the proposed method can not only locate the object but also estimate the direction of the object accurately.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. A Brief Review of Graph Convolutional Neural Network Based Learning for classifying remote sensing images

2. An Efficient Deep Convolutional Neural Network Approach for Object Detection and Recognition Using a Multi-Scale Anchor Box in Real-Time

3. Field Network—A New Method to Detect Directional Object

4. DOTA: A large-scale dataset for object detection in aerial images;Xia;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018

5. Reconstructing pascal voc;Vicente;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3