Framework to Extract Extreme Phytoplankton Bloom Events with Remote Sensing Datasets: A Case Study

Author:

Lu WenfangORCID,Gao Xinyu,Wu ZelunORCID,Wang Tianhao,Lin Shaowen,Xiao Canbo,Lai Zhigang

Abstract

The chlorophyll-a concentration (CHL) is an essential climate variable. Extremes of CHL events directly reflect the condition of marine ecosystems. Here, we applied the statistical framework for defining marine heatwaves to study the extremes of winter CHL blooms off the Luzon Strait (termed as LZB), northeastern South China Sea (SCS), from a set of remote sensing data. The application was enabled by a recent gap-free CHL dataset, the SCSDCT data. We present the basic properties and the long-term trends of these LZB events, which had become fewer but stronger in recent years. We further statistically analyze the LZB events’ controlling factors, including the submesoscale activity quantified by a heterogeneous index or surface temperature gradients. It was revealed that the submesoscale activity was also a vital modulating factor of the bloom events in addition to the well-understood wind and upwelling controls. This modulation can be explained by the stratification introduced by submesoscale mixed-layer instabilities. In the winter, the intensified winter monsoon provides a background front and well-mixed upper layer with replenished nutrients. During the wind relaxation, submesoscale baroclinic instabilities developed, leading to rapid stratification and scattered submesoscale fronts. Such a scenario is favorable for the winter blooms. For the first time, this study identifies the bloom events in a typical marginal sea and highlights the linkage between these events and submesoscale activity. Furthermore, the method used to identify extreme blooms opens up the possibility for understanding trends of multiple marine extreme events under climate change.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3