Spatial–Spectral Cross-Correlation Embedded Dual-Transfer Network for Object Tracking Using Hyperspectral Videos

Author:

Lei JieORCID,Liu Pan,Xie WeiyingORCID,Gao Long,Li Yunsong,Du Qian

Abstract

Hyperspectral (HS) videos can describe objects at the material level due to their rich spectral bands, which are more conducive to object tracking compared with color videos. However, the existing HS object trackers cannot make good use of deep-learning models to mine their semantic information due to limited annotation data samples. Moreover, the high-dimensional characteristics of HS videos makes the training of a deep-learning model challenging. To address the above problems, this paper proposes a spatial–spectral cross-correlation embedded dual-transfer network (SSDT-Net). Specifically, first, we propose to use transfer learning to transfer the knowledge of traditional color videos to the HS tracking task and develop a dual-transfer strategy to gauge the similarity between the source and target domain. In addition, a spectral weighted fusion method is introduced to obtain the inputs of the Siamese network, and we propose a spatial–spectral cross-correlation module to better embed the spatial and material information between the two branches of the Siamese network for classification and regression. The experimental results demonstrate that, compared to the state of the art, the proposed SSDT-Net tracker offers more satisfactory performance based on a similar speed to the traditional color trackers.

Funder

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference38 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hy-Tracker: A Novel Framework for Enhancing Efficiency and Accuracy of Object Tracking in Hyperspectral Videos;IEEE Transactions on Geoscience and Remote Sensing;2024

2. Material-Guided Multiview Fusion Network for Hyperspectral Object Tracking;IEEE Transactions on Geoscience and Remote Sensing;2024

3. Recent advances in object tracking using hyperspectral videos: a survey;Multimedia Tools and Applications;2023-12-11

4. SiamPKHT: Hyperspectral Siamese Tracking Based on Pyramid Shuffle Attention and Knowledge Distillation;Sensors;2023-12-01

5. Multi Modality Siamese Feature Fusion Transformer Tracker for Object Tracking from Hyperspectral Videos;2023 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS);2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3