Challenges and Evolution of Water Level Monitoring towards a Comprehensive, World-Scale Coverage with Remote Sensing

Author:

Machefer MélissandeORCID,Perpinyà-Vallès MartíORCID,Escorihuela Maria JoséORCID,Gustafsson David,Romero LaiaORCID

Abstract

Surface water availability is a fundamental environmental variable to implement effective climate adaptation and mitigation plans, as expressed by scientific, financial and political stakeholders. Recently published requirements urge the need for homogenised access to long historical records at a global scale, together with the standardised characterisation of the accuracy of observations. While satellite altimeters offer world coverage measurements, existing initiatives and online platforms provide derived water level data. However, these are sparse, particularly in complex topographies. This study introduces a new methodology in two steps (1) teroVIR, a virtual station extractor for a more comprehensive global and automatic monitoring of water bodies, and (2) teroWAT, a multi-mission, interoperable water level processor, for handling all terrain types. L2 and L1 altimetry products are used, with state-of-the-art retracker algorithms in the methodology. The work presents a benchmark between teroVIR and current platforms in West Africa, Kazakhastan and the Arctic: teroVIR shows an unprecedented increase from 55% to 99% in spatial coverage. A large-scale validation of teroWAT results in an average of unbiased root mean square error ubRMSE of 0.638 m on average for 36 locations in West Africa. Traditional metrics (ubRMSE, median, absolute deviation, Pearson coefficient) disclose significantly better values for teroWAT when compared with existing platforms, of the order of 8 cm and 5% improved respectively in error and correlation. teroWAT shows unprecedented excellent results in the Arctic, using an L1 products-based algorithm instead of L2, reducing the error by almost 4 m on average. To further compare teroWAT with existing methods, a new scoring option, teroSCO, is presented, measuring the quality of the validation of time series transversally and objectively across different strategies. Finally, teroVIR and teroWAT are implemented as platform-agnostic modules and used by flood forecasting and river discharge methods as relevant examples. A review of various applications for miscellaneous end-users is given, tackling the educational challenge raised by the community.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3