Reconstruction of Monthly Surface Nutrient Concentrations in the Yellow and Bohai Seas from 2003–2019 Using Machine Learning

Author:

Liu HaoORCID,Lin Lei,Wang Yujue,Du Libin,Wang Shengli,Zhou Peng,Yu Yang,Gong Xiang,Lu Xiushan

Abstract

Monitoring the spatiotemporal variability of nutrient concentrations in shelf seas is important for understanding marine primary productivity and ecological problems. However, long time-series and high spatial-resolution nutrient concentration data are difficult to obtain using only on ship-based measurements. In this study, we developed a machine-learning approach to reconstruct monthly sea-surface dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved silicate (DSi) concentrations in the Yellow and Bohai seas from 2003–2019. A large amount of in situ measured data were first used to train the machine-learning model and derive a reliable model with input of environmental data (including sea-surface temperature, salinity, chlorophyll-a, and Kd490) and output of DIN, DIP, and DSi concentrations. Then, longitudinal (2003–2019) monthly satellite remote-sensing environmental data were input into the model to reconstruct the surface nutrient concentrations. The results showed that the nutrient concentrations in nearshore (water depth < 40 m) and offshore (water depth > 40 m) waters had opposite seasonal variabilities; the highest (lowest) in summer in nearshore (offshore) waters and the lowest (highest) in winter in nearshore (offshore) waters. However, the DIN:DIP and DIN:DSi in most regions were consistently higher in spring and summer than in autumn and winter, and generally exceeded the Redfield ratio. From 2003–2019, DIN showed an increasing trend in nearshore waters (average 0.14 μmol/L/y), while DSi showed a slight increasing trend in the Changjiang River Estuary (0.06 μmol/L/y) but a decreasing trend in the Yellow River Estuary (–0.03 μmol/L/y), and DIP exhibited no significant trend. Furthermore, surface nutrient concentrations were sensitive to changes in sea-surface temperature and salinity, with distinct responses between nearshore and offshore waters. We believe that our novel machine learning method can be applied to other shelf seas based on sufficient observational data to reconstruct a long time-series and high spatial resolution sea-surface nutrient concentrations.

Funder

National Natural Science Foundation of China

Open Research Fund of State Key Laboratory of Estuarine and Coastal Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference88 articles.

1. The Influence of Organisms on the Composition of Sea-Water;Redfield;Sea Ideas Obs. Prog. Study Seas,1963

2. NUTRIENT LIMITATION OF NET PRIMARY PRODUCTION IN MARINE ECOSYSTEMS

3. The relative influences of nitrogen and phosphorus on oceanic primary production

4. Marine Eutrophication;Jessen,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3