Understanding Intensity–Duration–Frequency (IDF) Curves Using IMERG Sub-Hourly Precipitation against Dense Gauge Networks

Author:

Lau AlcelyORCID,Behrangi AliORCID

Abstract

The design storm derived from intensity–duration–frequency (IDF) curves is the main input for hydrologic analysis or hydraulic design for flood control. The regions with higher flood risks due to extreme precipitation are often deficient in precipitation gauges. This study presents a detailed evaluation of IDF curves derived using IMERG Final half-hourly precipitation (V06), fitted with the widely used CDFs: Gumbel and MLE, Gumbel and MM, Pearson 3, and GEV. As benchmarks and following the same method, we also derived IDF curves using areal average gridded precipitation constructed from two dense gauges networks over (1) the WegenerNET Feldbach region in the Alpine forelands of Austria and (2) the gauge network of the Walnut Gulch Experimental Watershed, in a semiarid region of the United States. In both regions, the frequency analysis for return periods between 2 and 100 years was based on half-hourly rainfall and compared at a grid-scale with a spatial resolution of IMERG, 0.1° × 0.1° lat/lon. The impact of order in which the gridded gauge-based precipitation average is performed within an IMERG grid was evaluated by computing two different Annual Maximum Series (AMS). In one, the average was computed before obtaining the AMS (AB-AMS), and in the other, the average was computed after obtaining the AMS for each gauge grid (AA-AMS) within the IMERG grid. The evaluation revealed that IMERG AMS agrees better with AB-AMS than AA-AMS for the two study regions. Lastly, it was found that the use of Gumbel distribution in calculating IMERG IDF curves results in better agreement with the ground truth than the use of the other three distributions studied here. The outcomes should provide valuable knowledge for the application of IMERG precipitation over regions with sparse gauges.

Funder

Fulbright-SENACYT scholarship

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Climate Change 2022 Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change;Langsdorf,2022

2. Hydrology and Floodplain Analysis;Bedient,1989

3. Deriving intensity–duration–frequency (IDF) curves using downscaled in situ rainfall assimilated with remote sensing data

4. So, How Much of the Earth’s Surface Is Covered by Rain Gauges?

5. Evaluating intensity-duration-frequency (IDF) curves of satellite-based precipitation datasets in Peninsular Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3