Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images

Author:

Abdul Gafoor Fahim,Al-Shehhi Maryam R.,Cho Chung-Suk,Ghedira Hosni

Abstract

Thousands of vessels travel around the world every day, making the safety, efficiency, and optimization of marine transportation essential. Therefore, the knowledge of bathymetry is crucial for a variety of maritime applications, such as shipping and navigation. Maritime applications have benefited from recent advancements in satellite navigation technology, which can utilize multi-spectral bands for retrieving information on water depth. As part of these efforts, this study combined deep learning techniques with satellite observations in order to improve the estimation of satellite-based bathymetry. The objective of this study is to develop a new method for estimating coastal bathymetry using Sentinel-2 images. Sentinel-2 was used here due to its high spatial resolution, which is desirable for bathymetry maps, as well as its visible bands, which are useful for estimating bathymetry. The conventional linear model approach using the satellite-derived bathymetry (SDB) ratio (green to blue) was applied, and a new four-band ratio using the four visible bands of Sentienl-2 was proposed. In addition, three atmospheric correction models, Sen2Cor, ALOCITE, and C2RCC, were evaluated, and Sen2Cor was found to be the most effective model. Gradient boosting was also applied in this study to both the conventional band ratio and the proposed FVBR ratio. Compared to the green to blue ratio, the proposed ratio FVBR performed better, with R2 exceeding 0.8 when applied to 12 snapshots between January and December. The gradient boosting method was also found to provide better estimates of bathymetry than linear regression. According to findings of this study, the chlorophyll-a (Chl-a) concentration, sediments, and atmospheric dust do not affect the estimated bathymetry. However, tidal oscillations were found to be a significant factor affecting satellite estimates of bathymetry.

Funder

Khalifa University of Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3