Spatial Representativeness of Eddy Covariance Measurements in a Coniferous Plantation Mixed with Cropland in Southeastern China

Author:

Xiang Wei,Rong Xingxing,Yan Wei,Qi Xiaowen,Wang Hesong,Jin Shaofei,Ai Jinlong

Abstract

The eddy covariance (EC) technique has been widely used as a micrometeorological tool to measure carbon, water and energy exchanges. When utilizing the EC measurements, it is critical to be aware of the long-term information on source areas. In China, large-scale forest plantations have become a dominant driver of greening and carbon sinks on the planet. However, the spatial representativeness of EC measurements on forest plantations is still not well understood. Here, an EC flux site of a coniferous plantation mixed with cropland in a subtropical monsoon climate was selected to evaluate the spatial representativeness of the two approaches. One is the fraction of target vegetation type (FTVT), which was used to detect to what degree the flux is related to the target vegetation. The other is the sensor location bias calculated from the enhanced vegetation index (EVI), which was used to detect to what spatial extent the flux can be upscaled. The results showed that the monthly footprint climatologies changed intensely throughout the year. The source area is biased toward the southeast in summer and northwest in winter. The study area was mainly a composite of coniferous plantations (70.08%) and double-cropped rice (27.83%). The double-cropped rice, with a higher seasonal variation of EVI than the coniferous plantation, was mainly distributed in the eastern areas of the study site. As a result of spatial heterogeneity and footprint variation, the FTVT was 0.89 when the wind direction was southwest; however, this reduced to 0.65 when the wind direction changed to the northeast and exhibited a single-peak seasonal variation during a year. The sensor location bias of the EVI also showed a significant monthly variation and ranged from −14.21% to 19.04% in a circular window with an increasing size from 250 to 3000 m. The overlap index between daytime and nighttime (Oday_night) can potentially be a quality flag for the GPP derived from the EC flux data. These findings demonstrate the joint effects of the monsoon climate and underlying surface heterogeneity on the spatial representativeness of the EC measurements. Our study highlights the importance of having footprint awareness in utilizing EC measurements for calibration and validation in monsoon areas.

Funder

Ministry of Science and Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3