Impact of Fengyun-3E Microwave Temperature and Humidity Sounder Data on CMA Global Medium Range Weather Forecasts

Author:

Kan WanlinORCID,Dong Peiming,Weng Fuzhong,Hu HaoORCID,Dong Changjiao

Abstract

In this study, the polarization characteristics of the newly launched Fengyun-3E (FY-3E) microwave sounding instruments are discussed, and its data quality is also assessed using one month of observation by the double-difference method. By comparison with the equivalent channels onboard Fengyun-3D (FY-3D) and advanced technology microwave sounder (ATMS), the data quality of FY-3E Microwave Humidity Sounder-II (MWHS-II) is improved and comparable to ATMS, while the data of FY-3E Microwave Temperature Sounder-III (MWTS-III) are slightly worse than data of FY-3D. The data of FY-3E MWTS-III are more susceptible to the early-morning orbit than the data of MWHS-II. In addition, striping noise is still present in channels 5–10 of MWTS-III. After the assessments, FY-3E microwave data are preprocessed and assimilated in the global forecast system for the Chinese Meteorology Administration (CMA-GFS). A total of six individual experiments over the period from 16 July to 15 August 2021 were conducted and the impact was evaluated with the composite score used in operation. It is shown that not only the forecasts for the southern hemisphere and tropics are improved significantly, but also the predictions for the northern hemisphere show some improvements in an overall neutral change from adding FY-3E microwave sounding instruments. The impact of FY-3E microwave radiance is equivalent to ATMS as they are assimilated individually. Furthermore, we note that the forecast impact is affected by the cloud detection scheme to a large extent.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3