The Evolution and Distribution of Microstructures in High-Energy Laser-Welded X100 Pipeline Steel

Author:

Wang Gang,Yin Limeng,Yao Zongxiang,Wang Jinzhao,Jiang Shan,Zhang Zhongwen,Zuo Cunguo

Abstract

High-energy beam welding was introduced for pipeline steel welding to reduce pipeline construction costs and improve the efficiency and safety of oil and gas transportation. Microstructures and their distribution in X100 laser-welded joints, which determine the joints’ strength and toughness, are discussed in this paper. Welded joints were prepared by an automatic 10,000-watt robot-based disc laser-welding platform for 12.8 mm thick X100 pipeline steel. Then, the grain, grain boundary, orientation, and distribution pattern of each zone of the welded joints were studied by optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and electron backscattered diffraction (EBSD) analysis techniques. The results showed that the grain boundary density, contents of the high-angle and low-angle grain boundaries, distribution states, and evolution trends of coincident site lattice (CSL) grain boundaries were essentially the same in each zone from the base metal (BM) to the weld of the X100 pipeline steel laser-welded joint. The relative content of grain boundaries above 55°, which were composed of the Σ3 type CSL grain boundary, showed a considerable impact on the mechanical properties of the joint. The content of twin grain boundaries was closely related to the thermal cycles of laser welding, and the effect of the cooling rate was greater than that of the process of austenization.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3