Abstract
Metallic nanowires (NWs) have attracted great attention in the frontiers of nanomaterial science due to their extraordinary properties, such as high thermal and electrical conductivity, high aspect ratio, good mechanical flexibility, and excellent optical transparency. The metallic NWs and their nanocomposites, as a promising alternative for conventional building materials, have been extensively studied recently, but review works on these novel versatile nanostructures and their various uses in the building and construction industry are still lacking. We present a comprehensive review on current state-of-the-art research and progress regarding multifunctional metallic NWs and their specific building applications, including thermal energy storage (TES), thermal transport, electrochromic windows (ECW), as well as photovoltaic (PV) cells. The nanosynthesis techniques and nanocharacterization of silver nanowires (AgNWs) and copper nanowires (CuNWs) are overviewed and compared with each other. In addition, the fundamentals of different NWs for advanced building applications are introduced. Further discussion is presented on the improved performance of base materials by using these nanostructures, highlighting the key factors exhibiting their superior performance. Finally, the key benefits and limitations of metallic NWs for new generation building materials are obtained.
Funder
National University of Singapore
Subject
General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献