Ultrasonic Influence on Plasmonic Effects Exhibited by Photoactive Bimetallic Au-Pt Nanoparticles Suspended in Ethanol

Author:

Hurtado-Aviles Eric Abraham,Torres Jesús Alejandro,Trejo-Valdez Martín,Torres-SanMiguel Christopher RenéORCID,Villalpando Isaela,Torres-Torres CarlosORCID

Abstract

The optical behavior exhibited by bimetallic nanoparticles was analyzed by the influence of ultrasonic and nonlinear optical waves in propagation through the samples contained in an ethanol suspension. The Au-Pt nanoparticles were prepared by a sol-gel method. Optical characterization recorded by UV-vis spectrophotometer shows two absorption peaks correlated to the synergistic effects of the bimetallic alloy. The structure and nanocrystalline nature of the samples were confirmed by Scanning Transmission Electron Microscopy with X-ray energy dispersive spectroscopy evaluations. The absorption of light associated with Surface Plasmon Resonance phenomena in the samples was modified by the dynamic influence of ultrasonic effects during the propagation of optical signals promoting nonlinear absorption and nonlinear refraction. The third-order nonlinear optical response of the nanoparticles dispersed in the ethanol-based fluid was explored by nanosecond pulses at 532 nm. The propagation of high-frequency sound waves through a nanofluid generates a destabilization in the distribution of the nanoparticles, avoiding possible agglomerations. Besides, the influence of mechanical perturbation, the container plays a major role in the resonance and attenuation effects. Ultrasound interactions together to nonlinear optical phenomena in nanofluids is a promising alternative field for a wide of applications for modulating quantum signals, sensors and acousto-optic devices.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3