Modelling of Coupled Shrinkage and Creep in Multiphase Formulations for Hardening Concrete

Author:

Gamnitzer PeterORCID,Brugger AndreasORCID,Drexel MartinORCID,Hofstetter GünterORCID

Abstract

The durability and serviceability of concrete structures is influenced by both the early-age behavior of concrete as well as its long-term response in terms of shrinkage and creep. Hygro-thermo-chemo-mechanical models, as they are used in the present publication, offer the possibility to consistently model the behavior of concrete from the first hours to several years. However, shortcomings of the formulation based on effective stress, which is usually employed in such multiphase models, were identified. As a remedy, two alternative formulations with a different coupling of shrinkage and creep are proposed in the present publication. Both assume viscous flow creep to be driven by total stress instead of effective stress, while viscoelastic creep is driven either by total or effective stress. Therefore, in contrast to the formulation based on effective stress, they predict a limit value for shrinkage as observed in long-term drying shrinkage tests. Shrinkage parameters for the new formulations are calibrated based on drying shrinkage data obtained from thin slices. The calibration process is straightforward for the new formulations since they decouple shrinkage and viscous flow creep. The different formulations are compared using results from shrinkage tests on sealed and unsealed cylindrical specimens. Shrinkage strain predictions are significantly improved by the new formulations.

Funder

Austrian Science Fund

Amt der Tiroler Landesregierung

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3