Studies on Pitting Corrosion of Al-Cu-Li Alloys Part II: Breakdown Potential and Pit Initiation

Author:

Ghanbari Elmira,Saatchi Alireza,Lei Xiaowei,Macdonald Digby D.

Abstract

Prediction of the accumulated pitting corrosion damage in aluminum-lithium (Al-Li) is of great importance due to the wide application of these alloys in the aerospace industry. The Point Defect Model (PDM) is arguably one of the most well-developed techniques for evaluating the electrochemical behavior of passive metals. In this paper, the passivity breakdown and pitting corrosion performance of AA 2098-T851 was investigated using the PDM with the potentiodynamic polarization (PDP) technique in NaCl solutions at different scan rates, Cl− concentrations and pH. Both the PDM predictions and experiments reveal linear relationships between the critical breakdown potential (Ec) of the alloy and various independent variables, such as a C l − and pH. Optimization of the PDM of the near-normally distributed Ec as measured in at least 20 replicate experiments under each set of conditions, allowing for the estimation of some of the critical parameters on barrier layer generation and dissolution, such as the critical areal concentration of condensed cation vacancies (ξ) at the metal/barrier layer interface and the mean diffusivity of the cation vacancy in the barrier layer (D). With these values obtained—using PDM optimization—in one set of conditions, the Ec distribution can be predicted for any other set of conditions (combinations of a Cl − , pH and T). The PDM predictions and experimental observations in this work are in close agreement.

Funder

U.S. Air Force Academy

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Reference86 articles.

1. Aluminum-Lithium Alloys: Processing, Properties, and Applications;Prasad,2013

2. Effect of Zn Addition on Corrosion Resistance of 2090 and 2091 Alloys;Kobayashi,1991

3. A Survey of Sensitization in 5xxx Series Aluminum Alloys

4. Influence of Mg Content on the Sensitization and Corrosion of Al-xMg(-Mn) Alloys

5. The influence of grain size and grain orientation on sensitization in AA5083;Zhang;Corrosion,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3