Mineralogical and Microstructural Characteristics of Two Dental Pulp Capping Materials

Author:

Voicu Georgeta,Didilescu Andreea C.ORCID,Stoian Andrei B.,Dumitriu Cristina,Greabu Maria,Andrei Mihai

Abstract

This paper aims to investigate the composition, surface, and microstructural characteristics, and bioactivity of two commercially available pulp capping materials known as TheraCal LC and BIO MTA+. The materials were prepared as cylindrical samples and assessed by X-ray diffraction (XRD) and complex thermal analysis for mineralogical characterization, and by scanning electron microscopy (SEM) coupled with energy dispersive of X-ray (EDX), Fourier-Transformed Infrared Spectroscopy (FT-IR), and atomic force microscopy (AFM) for microstructural and surface characteristics. The in vitro bioactivity was highlighted by surface mineralization throughout SEM coupled with EDX and FT-IR analysis. XRD analysis performed on both materials showed calcium silicate phases and different radiopacifying compounds. AFM measurements indicated a smoother and more homogenous surface with a lower average roughness for TheraCal LC due to the resin matrix from its composition. FT-IR analysis displayed bands for several compounds in both materials. Both materials exhibited bioactive properties showing surface mineralization after being immersed in solution similar to the human physiological environment. However, the MTA cement showed a better mineralization due to the anhydrous and hydrated phases.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3