Identification of Silvicultural Practices in Mediterranean Forests Integrating Landsat Time Series and a Single Coverage of ALS Data

Author:

Esteban Jessica,Fernández-Landa AlfredoORCID,Tomé José Luis,Gómez CristinaORCID,Marchamalo MiguelORCID

Abstract

Understanding forest dynamics at the stand level is crucial for sustainable management. Landsat time series have been shown to be effective for identification of drastic changes, such as natural disturbances or clear-cuts, but detecting subtle changes requires further research. Time series of six Landsat-derived vegetation indexes (VIs) were analyzed with the BFAST (Breaks for Additive Season and Trend) algorithm aiming to characterize the changes resulting from harvesting practices of different intensities (clear-cutting, cutting with seed-trees, and thinning) in a Mediterranean forest area of Spain. To assess the contribution of airborne laser scanner (ALS) data and the potential implications of it being after or before the detected changes, two scenarios were defined (based on the year in which ALS data were acquired (2010), and thereby detecting changes from 2005 to 2010 (before ALS data) and from 2011 to 2016 (after ALS data). Pixels identified as change by BFAST were attributed with change in VI intensity and ALS-derived statistics (99th height percentile and forest canopy cover) for classification with random forests, and derivation of change maps. Fusion techniques were applied to leverage the potential of each individual VI change map and to reduce mapping errors. The Tasseled Cap Brightness (TCB) and Normalized Burn Ratio (NBR) indexes provided the most accurate results, the latter being more precise for thinning detection. Our results demonstrate the suitability of Landsat time series and ALS data to characterize forest stand changes caused by harvesting practices of different intensity, with improved accuracy when ALS data is acquired after the change occurs. Clear-cuttings were more readily detectable compared to cutting with seed-trees and thinning, detection of which required fusion approaches. This methodology could be implemented to produce annual cartography of harvesting practices, enabling more accurate statistics and spatially explicit identification of forest operations.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3