Abstract
Spatially explicit, fine-grained datasets describing historical urban extents are rarely available prior to the era of operational remote sensing. However, such data are necessary to better understand long-term urbanization and land development processes and for the assessment of coupled nature–human systems (e.g., the dynamics of the wildland–urban interface). Herein, we propose a framework that jointly uses remote-sensing-derived human settlement data (i.e., the Global Human Settlement Layer, GHSL) and scanned, georeferenced historical maps to automatically generate historical urban extents for the early 20th century. By applying unsupervised color space segmentation to the historical maps, spatially constrained to the urban extents derived from the GHSL, our approach generates historical settlement extents for seamless integration with the multi-temporal GHSL. We apply our method to study areas in countries across four continents, and evaluate our approach against historical building density estimates from the Historical Settlement Data Compilation for the US (HISDAC-US), and against urban area estimates from the History Database of the Global Environment (HYDE). Our results achieve Area-under-the-Curve values >0.9 when comparing to HISDAC-US and are largely in agreement with model-based urban areas from the HYDE database, demonstrating that the integration of remote-sensing-derived observations and historical cartographic data sources opens up new, promising avenues for assessing urbanization and long-term land cover change in countries where historical maps are available.
Funder
National Science Foundation
National Institutes of Health
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献