Scattering Model-Based Frequency-Hopping RCS Reconstruction Using SPICE Methods

Author:

Li Yingjun,Zhang Wenpeng,Tian Biao,Lin Wenhao,Liu Yongxiang

Abstract

RCS reconstruction is an important way to reduce the measurement time in anechoic chambers and expand the radar original data, which can solve the problems of data scarcity and a high measurement cost. The greedy pursuit, convex relaxation, and sparse Bayesian learning-based sparse recovery methods can be used for parameter estimation. However, these sparse recovery methods either have problems in solving accuracy or selecting auxiliary parameters, or need to determine the probability distribution of noise in advance. To solve these problems, a non-parametric Sparse Iterative Covariance Estimation (SPICE) algorithm with global convergence property based on the sparse Geometrical Theory of Diffraction (GTD) model (GTD–SPICE) is employed for the first time for RCS reconstruction. Furthermore, an improved coarse-to-fine two-stage SPICE method (DE–GTD–SPICE) based on the Damped Exponential (DE) model and the GTD model (DE–GTD) is proposed to reduce the computational cost. Experimental results show that both the GTD–SPICE method and the DE–GTD–SPICE method are reliable and effective for RCS reconstruction. Specifically, the DE–GTD–SPICE method has a shorter computational time.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Radar Cross Section;Knott,2004

2. Radar cross section measurements using near-field radar imaging;Odendaal;IEEE Trans. Instrum. Meas.,1996

3. Performance of sparse recovery algorithms for the reconstruction of radar images from incomplete RCS data;Bae;IEEE Geosci. Remote. Sens. Lett.,2014

4. An Overview of Automatic Target Recognitionhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.186.2998&rep=rep1&type=pdf

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3