A Deep Fusion uNet for Mapping Forests at Tree Species Levels with Multi-Temporal High Spatial Resolution Satellite Imagery

Author:

Guo YingORCID,Li Zengyuan,Chen Erxue,Zhang Xu,Zhao Lei,Xu Enen,Hou Yanan,Liu Lizhi

Abstract

It is critical to acquire the information of forest type at the tree species level due to its strong links with various quantitative and qualitative indicators in forest inventories. The efficiency of deep-learning classification models for high spatial resolution (HSR) remote sensing image has been demonstrated with the ongoing development of artificial intelligence technology. However, due to limited statistical separability and complicated circumstances, completely automatic and highly accurate forest type mapping at the tree species level remains a challenge. To deal with the problem, a novel deep fusion uNet model was developed to improve the performance of forest classification refined at the dominant tree species level by combining the beneficial phenological characteristics of the multi-temporal imagery and the powerful features of the deep uNet model. The proposed model was built on a two-branch deep fusion architecture with the deep Res-uNet model functioning as its backbone. Quantitative assessments of China’s Gaofen-2 (GF-2) HSR satellite data revealed that the suggested model delivered a competitive performance in the Wangyedian forest farm, with an overall classification accuracy (OA) of 93.30% and a Kappa coefficient of 0.9229. The studies also yielded good results in the mapping of plantation species such as the Chinese pine and the Larix principis.

Funder

Special Funds for Fundamental Research Business Expenses of Central Public Welfare Research Institutions

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3