A Stereo Matching Method for 3D Image Measurement of Long-Distance Sea Surface

Author:

Yang YingORCID,Lu Cunwei

Abstract

Tsunamis are some of the most destructive natural disasters. Some proposed tsunami measurement and arrival prediction systems use a limited number of instruments, then judge the occurrence of the tsunami, forecast its arrival time, location and scale. Since there are a limited number of measurement instruments, there is a possibility that large prediction errors will occur. In order to solve this problem, a long-distance tsunami measurement system based on the binocular stereo vision principle is proposed in this paper. The measuring range is 4–20 km away from the system deployment site. In this paper, we will focus on describing the stereo matching method for the proposed system. This paper proposes a two-step matching method. It first performs fast sparse matching, and then complete high precision dense matching based on the results of the sparse matching. A matching descriptor based on the physical features of sea waves is proposed to solve the matching difficulty caused by the similarity of sea surface image textures. The relationship between disparity and the y coordinate is built to reduce the matching search range. Experiments were conducted on sea surface images with different shooting times and distances; the results verify the effectiveness of the presented method.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference47 articles.

1. On the Application of Mwp in the Near Field and the March 11, 2011 Tohoku Earthquake

2. Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench http://www.bosai.go.jp/inline/seibi/seibi01.html/

3. The new tsunami warning system of the Japan Meteorological Agency;Tatehata,1997

4. Nationwide Post Event Survey and Analysis of the 2011 Tohoku Earthquake Tsunami

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3