Joint Tracking of Source and Environment Using Improved Particle Filtering in Shallow Water

Author:

Dai MiaoORCID,Li YaanORCID,Ye Jinying,Yang Kunde

Abstract

Shallow water is a complex sound propagation medium, which is affected by the varying spatial–temporal ocean environment. Taking this complexity into account, the classical processing techniques of source localization and environmental inversion may be improved. In this work, a joint tracking approach for the moving source and environmental parameters of the range-dependent and time-evolving environment in shallow water is presented. The tracking scheme treats both the source parameters (e.g., source depth, range, and speed) and the environmental parameters (e.g., water column sound speed profile (SSP) and sediment parameters) at the source location as unknown variables that evolve as the source moves. To counter sample impoverishment and robustly characterize the evolution of the parameters, an improved particle filter (PF), which is an extension of the standard PF, is proposed. Two examples with simulated data in a slowly changing environment and experimental data collected during the ASIAEX experiment are utilized to demonstrate the effectiveness of the joint approach. The results show that we were able to track the source and environmental parameters simultaneously, and the uncertainties were evaluated in the form of time-evolving posterior probability densities (PPDs). The performance comparison confirms that the improved PF is superior to the standard PF, as it can reduce the parameter uncertainties. The tracking capabilities of the improved PF were verified with high accuracy in real-time source localization and well-estimated rapidly varying parameters. Moreover, the influence of different particle numbers on the improved PF tracking performance is also illustrated.

Funder

the Key research and development plan of Shaanxi Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mesh Optimization for the Acoustic Parabolic Equation;Journal of Marine Science and Engineering;2023-02-25

2. Modeling Techniques for Underwater Acoustic Scattering and Propagation (Including 3D Effects);Journal of Marine Science and Engineering;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3