Investigation of the Dynamic Characteristics of an Eccentric Annular Seal on the Basis of a Transient CFD Method with Three Whirl Models

Author:

Li Fengqin,Zhai LuluORCID,Cui BaolingORCID,Guo Jia,Chen Guoyou

Abstract

Many annular seals suffer eccentricity because of rotor–stator misalignment or the deflection of a flexible rotor, which has a strong influence on the vibration characteristics and stability of rotating machines. In this article, a transient CFD method based on three whirl models is employed to research the dynamic characteristics of annular seals at various static eccentricities. The influence of the whirl amplitude on the dynamic characteristics of eccentric annular seals are also explored. The results of the transient CFD method are compared with the bulk flow model results and the experimental results. It is shown that the transient CFD method possesses high prediction precision for direct damping, with a maximum error of 25%. Negative kyx increases by 166% when the static eccentricity ratio is increased from 0 to 0.5. The dynamic characteristics of the annular seal operating at high static eccentric ratio are sensitive to whirl amplitude, and the model with an amplitude of 1% Cr has great advantages for the prediction of direct virtual-mass, while the model with an amplitude of 10% Cr has great advantages for the prediction of cross-coupled damping.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3