Greenhouse Gas Emission Model for Tidal Flats in the Republic of Korea

Author:

Dang Nhi Yen Thi,Park Heung-Sik,Mir Kaleem Anwar,Kim Choong-GonORCID,Kim Seungdo

Abstract

Since coastal wetlands have been severely degraded and polluted by human activities, they have increasingly become a significant source of greenhouse gases (GHGs), so understanding the characteristics of their emissions is critical for devising future climate change mitigation strategies. This study modified a model based on carbon balance to forecast carbon stored and CO2, CH4 emissions in four types of typical tidal flats—Phragmites australis (PA), Spartina alterniflora (SA), Suaeda japonica (SJ), and Bare Tidal Flat (BTF) in Korea’s Ganghwa province from 2017 to 2047. The model was built using biomass data from salt plant species collected in different locations. The results indicate that the total annual simulated flow of CH4 increased over time in all four areas, most notably in SA, while CO2 remained relatively stable. The mean CO2 and CH4 fluxes in the four types of representative tidal flats were in the range of 0.03 to 19.1 mg m−2 d−1 and 0.007 to 5.23 mg m−2 d−1, respectively, across all seasons. Besides, the results indicate that the amount of carbon accumulated in the top soil increases linearly over time in nearly all areas studied, ranging from 0.01 to 0.13 (kgC m−2 yr−1). In general, the study provides a model for Korean tidal flats that incorporates carbon storage and GHG emissions in the intertidal zone in order to develop potential GHG reduction scenarios.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coastal Wetlands;Journal of Marine Science and Engineering;2023-03-31

2. Sources and sequestration rate of organic carbon in sediments of the bare tidal flat ecosystems: A model approach;Marine Environmental Research;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3