Wind Features Extracted from Weather Simulations for Wind-Wave Prediction Using High-Resolution Neural Networks

Author:

Wei Chih-ChiangORCID

Abstract

Nearshore wave forecasting is susceptible to changes in regional wind fields and environments. However, surface wind field changes are difficult to determine due to the lack of in situ observational data. Therefore, accurate wind and coastal wave forecasts during typhoon periods are necessary. The purpose of this study is to develop artificial intelligence (AI)-based techniques for forecasting wind–wave processes near coastal areas during typhoons. The proposed integrated models employ combined a numerical weather prediction (NWP) model and AI techniques, namely numerical (NUM)-AI-based wind–wave prediction models. This hybrid model comprising VGGNNet and High-Resolution Network (HRNet) was integrated with recurrent-based gated recurrent unit (GRU). Termed mVHR_GRU, this model was constructed using a convolutional layer for extracting features from spatial images with high-to-low resolution and a recurrent GRU model for time series prediction. To investigate the potential of mVHR_GRU for wind–wave prediction, VGGNet, HRNet, and Two-Step Wind-Wave Prediction (TSWP) were selected as benchmark models. The coastal waters in northeast Taiwan were the study area. The length of the forecast horizon was from 1 to 6 h. The mVHR_GRU model outperformed the HR_GRU, VGGNet, and TSWP models according to the error indicators. The coefficient of mVHR_GRU efficiency improved by 13% to 18% and by 13% to 15% at the Longdong and Guishandao buoys, respectively. In addition, in a comparison of the NUM–AI-based model and a numerical model simulating waves nearshore (SWAN), the SWAN model generated greater errors than the NUM–AI-based model. The results of the NUM–AI-based wind–wave prediction model were in favorable accordance with the observed results, indicating the feasibility of the established model in processing spatial data.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3