A User-Oriented Local Coastal Flooding Early Warning System Using Metamodelling Techniques

Author:

Idier DéborahORCID,Aurouet Axel,Bachoc François,Baills AudreyORCID,Betancourt José,Gamboa FabriceORCID,Klein Thierry,López-Lopera Andrés F.,Pedreros RodrigoORCID,Rohmer Jérémy,Thibault Alexandre

Abstract

Given recent scientific advances, coastal flooding events can be properly modelled. Nevertheless, such models are computationally expensive (requiring many hours), which prevents their use for forecasting and warning. In addition, there is a gap between the model outputs and information actually needed by decision makers. The present work aims to develop and test a method capable of forecasting coastal flood information adapted to users’ needs. The method must be robust and fast and must integrate the complexity of coastal flood processes. The explored solution relies on metamodels, i.e., mathematical functions that precisely and efficiently (within minutes) estimate the results that would provide the numerical model. While the principle of relying on metamodel solutions is not new, the originality of the present work is to tackle and validate the entire process from the identification of user needs to the establishment and validation of the rapid forecast and early warning system (FEWS) while relying on numerical modelling, metamodelling, the development of indicators, and information technologies. The development and validation are performed at the study site of Gâvres (France). This site is subject to wave overtopping, so the numerical phase-resolving SWASH model is used to build the learning dataset required for the metamodel setup. Gaussian process- and random forest classifier-based metamodels are used and post-processed to estimate 14 indicators of interest for FEWS users. These metamodelling and post-processing schemes are implemented in an FEWS prototype, which is employed by local users and exhibits good warning skills during the validation period. Based on this experience, we provide recommendations for the improvement and/or application of this methodology and individual steps to other sites.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3