The Use of Geoinformatics in Coastal Atmospheric Transport Phenomena: The Athens Experiment

Author:

Nitis TheodorosORCID,Moussiopoulos Nicolas

Abstract

Coastal environment, an area where abrupt changes occur between land and sea, significantly affects the quality of life of a high portion of the Earth’s population. Therefore, the wide range of phenomena observed in coastal areas need to be assessed reliably regarding both data sets and methods applied. In particular, the study of coastal atmospheric transport phenomena which affect a variety of activities in coastal areas, using modeling techniques, demand accurate estimations of a range of meteorological and climatological variables related to the planetary boundary layer. However, the accuracy of such estimations is not obvious. Geoinformatics is able to fill this gap and provide the framework for the design, processing and implementation of accurate geo-databases. This paper aims to highlight the role of geoinformatics in the context of coastal meteorology and climatology. More precisely, it aims to reveal the effect on the performance of a Mesoscale Meteorological Model when a new scheme regarding the input surface parameters is developed using satellite data and application of Geographical Information Systems. The development of the proposed scheme is described and evaluated using the coastal Metropolitan Area of Athens, Greece as a case study. The results indicate a general improvement in the model performance based on the statistical evaluations of three meteorological parameters (temperature, wind speed and wind direction) using four appropriate indicators. The best performance was observed for temperature, then for wind direction and finally for wind speed. The necessity of the proposed new scheme is further discussed.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3