Author:
Gao Pengcheng,Huang Qiaogao,Pan Guang
Abstract
A numerical simulation is used to investigate the effects of adding high frequency and low amplitude perturbations of different waveforms to the sinusoidal-based signal of the heaving foil on the propulsion performance and wake structure. We use the adjustable parameter k to achieve a heaving motion of various waveform cycle trajectories, such as sawtooth, sine, and square. Adding a perturbation of whatever waveform is beneficial in increasing the thrust of the heaving foil, especially by adding a square wave perturbation with a frequency of 10 Hz, pushes the thrust up to 10.49 times that without the perturbation. However, the addition of the perturbation signal brings a reduction in propulsion efficiency, and the larger the perturbation frequency, the lower the efficiency. The wake structure of the heaving foil behaves similarly under different waveform perturbations, all going through some intermediate stages, which eventually evolve into a chaotic wake with the increase in the perturbation frequency. However, a lower frequency square wave perturbation can destabilize the heaving foil wake structure. This work further explains the effect of different waveform perturbation signals on the base sinusoidal signal and provides a new control idea for underwater vehicles.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献