Study on Different Parameters of the Self-Excited Oscillation Nozzle for Cavitation Effect under Multiphase Mixed Transport Conditions

Author:

Zhao FujianORCID,Wang XiuliORCID,Xu WeiORCID,Zhao Yuanyuan,Zhao Guohui,Zhu Han

Abstract

The pollution problems of water resources have affected the ecology of the Earth, especially the ecological environment of the oceans. In order to find a cheaper and cleaner organic wastewater treatment method and explore the effect of geometrical parameters and external parameters of self-excited oscillation on cavitation performance, apply it in engineering stably and efficiently, this study took the cavitation effect of self-excited oscillating cavitation jet nozzle as the research target and simulated the geometrical parameters and external parameters of the nozzle. The primary and secondary relationship of the effect of all parameters on cavitation performance was summarized by analyzing the correlation and partial correlation of each parameter. Subsequently, principal component analysis (PCA) was conducted to build a mathematical model of self-excited oscillating cavitation jet nozzle suitable for multiphase transport. As revealed from the results, the contribution rate of parameters to vapor volume fraction followed the order of CLD > d1 > Cd21 > CDd2 > Pin. The ratio of outlet diameter to inlet diameter (Cd21) of the self-excited oscillating cavitation jet nozzle significantly impacted the volume fraction of cavitation vapor (VOF) due to the change of particle diameter, while the influence of other design parameters on VOF was not significant with the change of particle diameter. The larger the content of solid particles, the less the VOF would be impacted by the design parameters. Under the solid particle content of 10% and the particle diameter of 0.2 mm, an independent working point was obtained. In addition, after experimental verification, it was found that the slope of experimental fitting was basically the identical to the corresponding coefficient of parameters in the model. This model and the self-excited nozzle with good cavitation performance provide a theoretical basis for solving the problem of water pollution.

Funder

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3