Effects of Gap Resonance on the Hydrodynamics and Dynamics of a Multi-Module Floating System with Narrow Gaps

Author:

Chen MingshengORCID,Guo Hongrui,Wang Rong,Tao Ran,Cheng Ning

Abstract

Multi-module floating system has attracted much attention in recent years as ocean space utilization becomes more demanding. This type of structural system has potential applications in the design and construction of floating piers, floating airports and Mobile Offshore Bases (MOBs) generally consists of multiple modules with narrow gaps in which hydrodynamic interactions play a non-neglected role. This study considers a numerical model consisting of several rectangular modules to study the hydrodynamics and dynamics of the multi-module floating system subjected to the waves. Based on ANSYS-AQWA, both frequency-domain and time-domain simulations are performed to analyze the complex multi-body hydrodynamic interactions by introducing artificial damping on the gap surfaces. Parametric studies are carried out to investigate the effects of the gap width, shielding effects of the multi-body system, artificial damping ratio on the gap surface, and the dependency of the hydrodynamic interaction effect on wave headings is clarified. Based on the results, it is found that the numerical analysis based on the potential flow theory with artificial damping introduced can produce accurate results for the normal wave period range. In addition, the effects of artificial damping on the dynamics and connector loads are investigated by using a simplified RMFC model. For the case of adding an artificial damping ratio of 0.2, the relative heave and pitch motions are found to be reduced by 33% and 50%, respectively. In addition, the maximum cable and fender forces are found to be reduced by 50%, compared with the case without viscosity correction.

Funder

CCCC Research & Development Project; Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3