Abstract
With the ever-increasing industrial demand for bigger, faster and more efficient systems, a growing number of cores is integrated on a single chip. Additionally, their performance is further maximized by simultaneously executing as many processes as possible. Even in safety-critical domains like railway and avionics, multicore processors are introduced, but under strict certification regulations. As the number of cores is continuously expanding, the importance of cost-effectiveness grows. One way to increase the cost-efficiency of such a System on Chip (SoC) is to enhance the way the SoC handles its power consumption. By increasing the power efficiency, the reliability of the SoC is raised because the lifetime of the battery lengthens. Secondly, by having less energy consumed, the emitted heat is reduced in the SoC, which translates into fewer cooling devices. Though energy efficiency has been thoroughly researched, there is no application of those power-saving methods in safety-critical domains yet. The EU project SAFEPOWER (Safe and secure mixed-criticality systems with low power requirements) targets this research gap and aims to introduce certifiable methods to improve the power efficiency of mixed-criticality systems. This article provides an overview of the SAFEPOWER reference architecture for low-power mixed-criticality systems, which is the most important outcome of the project. Furthermore, the application of this reference architecture in novel railway interlocking and flight controller avionic systems was demonstrated, showing the capability to achieve power savings up to 37%, while still guaranteeing time-triggered task execution and time-triggered NoC-based communication.
Subject
Electrical and Electronic Engineering
Reference19 articles.
1. Mixed Criticality Systems—A Reviewhttps://www-users.cs.york.ac.uk/burns/review.pdf
2. A railway safety and security concept for low-power mixed-criticality systems
3. Apply AUTOSAR Timing Protection to Build Safe and Efficient ISO 26262 Mixed-Criticality Systemshttp://web1.see.asso.fr/erts2012/Site/0P2RUC89/4C-4.pdf
4. Multicore partitioned systems based on hypervisor
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Functional test environment for time-triggered control systems in complex MPSoCs;Microprocessors and Microsystems;2020-07
2. Industrial Practices in Low-Power Robust Design;2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS);2020-07