Changes in the Heat Content of Water Column in the Slope Area of the Southern Basin of Lake Baikal in the 21st Century

Author:

Troitskaya ElenaORCID,Budnev NikolayORCID,Shimaraev Mikhail

Abstract

Climate change influences the temperature, ice and thermal regimes of lakes in the Northern Hemisphere. This study discusses the change in the heat content of the water column in the slope area of the southern basin of Lake Baikal under the influence of climate for the past 20 years. We clarify the seasonal variability of heat content in different water layers selected taking into account temperature and dynamic characteristics. During the study period, the value of heat content increased in the upper water layer (45–100 m) only in May (12.4 (MJ/m2)/year). In the water layers deeper than 100 m, the value of heat content decreased: −3–−4 (MJ/m2)/year from July to September in a layer of 100–300 m, −9–−13 (MJ/m2)/year in all months in a layer of 300–1100 m and −1.5–−3 (MJ/m2)/year in all months, except for January in a layer of 1100 m–bottom. Despite the revealed trends of the change in the heat content, the annual heat circulation remained within the normal range and did not have any trends.

Funder

the State project "Science" by the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference48 articles.

1. Space observations of inland water bodies show rapid surface warming since;Schneider;Geophys. Res. Lett.,1985

2. Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies,2013

3. Small lakes show muted climate change signal in deepwater temperatures

4. Rapid and highly variable warming of lake surface waters around the globe

5. Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3