Achieving Adaptive Visual Multi-Object Tracking with Unscented Kalman Filter

Author:

Zhang Guowei,Yin Jiyao,Deng Peng,Sun Yanlong,Zhou Lin,Zhang Kuiyuan

Abstract

As an essential part of intelligent monitoring, behavior recognition, automatic driving, and others, the challenge of multi-object tracking is still to ensure tracking accuracy and robustness, especially in complex occlusion environments. Aiming at the issues of the occlusion, background noise, and motion state violent change for multi-object in a complex scene, an improved DeepSORT algorithm based on YOLOv5 is proposed for multi-object tracking to enhance the speed and accuracy of tracking. Firstly, a general object motion model is devised, which is similar to the variable acceleration motion model, and a multi-object tracking framework with the general motion model is established. Then, the latest YOLOv5 algorithm, which has satisfactory detection accuracy, is utilized to obtain the object information as the input of multi-object tracking. An unscented Kalman filter (UKF) is proposed to estimate the motion state of multi-object to solve nonlinear errors. In addition, the adaptive factor is introduced to evaluate observation noise and detect abnormal observations so as to adaptively adjust the innovation covariance matrix. Finally, an improved DeepSORT algorithm for multi-object tracking is formed to promote robustness and accuracy. Extensive experiments are carried out on the MOT16 data set, and we compare the proposed algorithm with the DeepSORT algorithm. The results indicate that the speed and precision of the improved DeepSORT are increased by 4.75% and 2.30%, respectively. Especially in the MOT16 of the dynamic camera, the improved DeepSORT shows better performance.

Funder

National Key R&D Program of China

Science and Technology Plan Project of Fire Department

Experimental Technology Research and Development Project of China University of Mining and Technology

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Graduate Innovation Program of China University of Mining and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3