Application of Transformer Models to Landslide Susceptibility Mapping

Author:

Bao Shuai,Liu Jiping,Wang Liang,Zhao XizhiORCID

Abstract

Landslide susceptibility mapping (LSM) is of great significance for the identification and prevention of geological hazards. LSM is based on convolutional neural networks (CNNs); CNNs use fixed convolutional kernels, focus more on local information and do not retain spatial information. This is a property of the CNN itself, resulting in low accuracy of LSM. Based on the above problems, we use Vision Transformer (ViT) and its derivative model Swin Transformer (Swin) to conduct LSM for the selected study area. Machine learning and a CNN model are used for comparison. Fourier transform amplitude, feature similarity and other indicators were used to compare and analyze the difference in the results. The results show that the Swin model has the best accuracy, F1-score and AUC. The results of LSM are combined with landslide points, faults and other data analysis; the ViT model results are the most consistent with the actual situation, showing the strongest generalization ability. In this paper, we believe that the advantages of ViT and its derived models in global feature extraction ensure that ViT is more accurate than CNN and machine learning in predicting landslide probability in the study area.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3