Automated Hyperspectral Feature Selection and Classification of Wildlife Using Uncrewed Aerial Vehicles

Author:

McCraine Daniel1,Samiappan Sathishkumar1ORCID,Kohler Leon2,Sullivan Timo3,Will David J.3ORCID

Affiliation:

1. Geosystems Research Institute, Mississippi State University, Starkville, MS 39759, USA

2. Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762, USA

3. Island Conservation, Santa Cruz, CA 95060, USA

Abstract

Timely and accurate detection and estimation of animal abundance is an important part of wildlife management. This is particularly true for invasive species where cost-effective tools are needed to enable landscape-scale surveillance and management responses, especially when targeting low-density populations residing in dense vegetation and under canopies. This research focused on investigating the feasibility and practicality of using uncrewed aerial systems (UAS) and hyperspectral imagery (HSI) to classify animals in the wild on a spectral—rather than spatial—basis, in the hopes of developing methods to accurately classify animal targets even when their form may be significantly obscured. We collected HSI of four species of large mammals reported as invasive species on islands: cow (Bos taurus), horse (Equus caballus), deer (Odocoileus virginianus), and goat (Capra hircus) from a small UAS. Our objectives of this study were to (a) create a hyperspectral library of the four mammal species, (b) study the efficacy of HSI for animal classification by only using the spectral information via statistical separation, (c) study the efficacy of sequential and deep learning neural networks to classify the HSI pixels, (d) simulate five-band multispectral data from HSI and study its effectiveness for automated supervised classification, and (e) assess the ability of using HSI for invasive wildlife detection. Image classification models using sequential neural networks and one-dimensional convolutional neural networks were developed and tested. The results showed that the information from HSI derived using dimensionality reduction techniques were sufficient to classify the four species with class F1 scores all above 0.85. The performances of some classifiers were capable of reaching an overall accuracy over 98%and class F1 scores above 0.75, thus using only spectra to classify animals to species from existing sensors is feasible. This study discovered various challenges associated with the use of HSI for animal detection, particularly intra-class and seasonal variations in spectral reflectance and the practicalities of collecting and analyzing HSI data over large meaningful areas within an operational context. To make the use of spectral data a practical tool for wildlife and invasive animal management, further research into spectral profiles under a variety of real-world conditions, optimization of sensor spectra selection, and the development of on-board real-time analytics are needed.

Funder

Seaver Institute

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3