Joint Panchromatic and Multispectral Geometric Calibration Method for the DS-1 Satellite

Author:

Jiang Xiaohua12,Zhang Xiaoxiao3,Liu Ming1,Tian Jie4

Affiliation:

1. Harbin Institute of Technology, Harbin 150001, China

2. Zhuhai Aerospace Microchips Science & Technology Co., Ltd., Zhuhai 519000, China

3. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China

4. China Electronic System Technology Co., Ltd., Wuhan 430015, China

Abstract

The DS-1 satellite was launched successfully on 3 June 2021 from the Taiyuan Satellite Launch Center. The satellite is equipped with a 1 m panchromatic and a 4 m multispectral sensor, providing high-resolution and wide-field optical remote sensing imaging capabilities. For satellites equipped with panchromatic and multispectral sensors, conventional geometric processing methods in the past involved separate calibration for the panchromatic sensor and the multispectral sensor. This method produced distinct internal and external calibration parameters in the respective bands, and also resulted in nonlinear geometric misalignments between the panchromatic and multispectral images due to satellite chattering and other factors. To better capitalize on the high spatial resolution of panchromatic imagery and the superior spectral resolution of multispectral imagery, it is necessary to perform registration on the calibrated panchromatic and multispectral images. When registering separately calibrated panchromatic and multispectral images, poor consistency between panchromatic and multispectral images leads to a small number of corresponding points, resulting in poor accuracy and registration effects. To address this issue, we propose a joint panchromatic and multispectral calibration method to register the panchromatic and multispectral images. Before geometric calibration, it is necessary to perform corresponding points matching. When matching, the small interval between the panchromatic and multispectral Charge-Coupled Devices (CCDs) results in a small intersection angle of the corresponding points between the panchromatic and multispectral images. As a result of this, the consistency between the spectral bands significantly improves, and the corresponding points match to have a more uniform distribution and a wider coverage. The technique enhances the consistent registration accuracy of both the panchromatic and multispectral bands. Experiments demonstrate that the joint calibration method yields a registration accuracy of panchromatic and multispectral bands exceeding 0.3 pixels.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3