Evaluating the Efficacy of Segment Anything Model for Delineating Agriculture and Urban Green Spaces in Multiresolution Aerial and Spaceborne Remote Sensing Images

Author:

Gui Baoling1ORCID,Bhardwaj Anshuman1ORCID,Sam Lydia1ORCID

Affiliation:

1. School of Geosciences, University of Aberdeen, Aberdeen AB24 3UF, UK

Abstract

Segmentation of Agricultural Remote Sensing Images (ARSIs) stands as a pivotal component within the intelligent development path of agricultural information technology. Similarly, quick and effective delineation of urban green spaces (UGSs) in high-resolution images is also increasingly needed as input in various urban simulation models. Numerous segmentation algorithms exist for ARSIs and UGSs; however, a model with exceptional generalization capabilities and accuracy remains elusive. Notably, the newly released Segment Anything Model (SAM) by META AI is gaining significant recognition in various domains for segmenting conventional images, yielding commendable results. Nevertheless, SAM’s application in ARSI and UGS segmentation has been relatively limited. ARSIs and UGSs exhibit distinct image characteristics, such as prominent boundaries, larger frame sizes, and extensive data types and volumes. Presently, there is a dearth of research on how SAM can effectively handle various ARSI and UGS image types and deliver superior segmentation outcomes. Thus, as a novel attempt in this paper, we aim to evaluate SAM’s compatibility with a wide array of ARSI and UGS image types. The data acquisition platform comprises both aerial and spaceborne sensors, and the study sites encompass most regions of the United States, with images of varying resolutions and frame sizes. It is noteworthy that the segmentation effect of SAM is significantly influenced by the content of the image, as well as the stability and accuracy across images of different resolutions and sizes. However, in general, our findings indicate that resolution has a minimal impact on the effectiveness of conditional SAM-based segmentation, maintaining an overall segmentation accuracy above 90%. In contrast, the unsupervised segmentation approach, SAM, exhibits performance issues, with around 55% of images (3 m and coarser resolutions) experiencing lower accuracy on low-resolution images. Whereas frame size exerts a more substantial influence, as the image size increases, the accuracy of unsupervised segmentation methods decreases extremely fast, and conditional segmentation methods also show some degree of degradation. Additionally, SAM’s segmentation efficacy diminishes considerably in the case of images featuring unclear edges and minimal color distinctions. Consequently, we propose enhancing SAM’s capabilities by augmenting the training dataset and fine-tuning hyperparameters to align with the demands of ARSI and UGS image segmentation. Leveraging the multispectral nature and extensive data volumes of remote sensing images, the secondary development of SAM can harness its formidable segmentation potential to elevate the overall standard of ARSI and UGS image segmentation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3