Identification of Complex Slope Subsurface Strata Using Ground-Penetrating Radar

Author:

Wang Tiancheng12,Zhang Wensheng2,Li Jinhui12,Liu Da3,Zhang Limin4ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Intelligent and Resilient Structures for Civil Engineering, Shenzhen 518055, China

2. Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

3. China Construction Science & Technology Co., Ltd., Shenzhen 518118, China

4. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Abstract

Identification of slope subsurface strata for natural soil slopes is essential to assess the stability of potential landslides. The highly variable strata in a slope are hard to characterize by traditional boreholes at limited locations. Ground-penetrating radar (GPR) is a non-destructive method that is capable of capturing continuous subsurface information. However, the accuracy of subsurface identification using GPRs is still an open issue. This work systematically investigates the capability of the GPR technique to identify different strata via both laboratory experiments and on-site examination. Six large-scale models were constructed with various stratigraphic interfaces (i.e., sand–rock, clay–rock, clay–sand, interbedded clay, water table, and V–shaped sand–rock). The continuous interfaces of the strata in these models were obtained using a GPR, and the depths at different points of the interfaces were interpreted. The interpreted depths along the interface were compared with the measured values to quantify the interpretation accuracy. Results show that the depths of interfaces should be interpreted with the relative permittivity, back-calculated using on-site borehole information instead of empirical values. The relative errors of the depth of horizontal interfaces of different strata range within ±5%. The relative and absolute errors of the V–shaped sand–rock interface depths are in the ranges of [−9.9%, 10.5%] and [−107, 119] mm, respectively. Finally, the GPR technique was used in the field to identify the strata of a slope from Tanglang Mountain in China. The continuous profile of the subsurface strata was successfully identified with a relative error within ±5%.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3