Mechanical Properties of Uncured Thermoset Tow Prepreg: Experiment and Finite Element Analysis

Author:

Derakhshani Dastjerdi Mina1,Carboni Massimo1,Hojjati Mehdi1

Affiliation:

1. Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, 1455 De Maisonneuve Blvd W., Montreal, QC H3G 1M8, Canada

Abstract

This paper presents an experimental analysis of the tensile behavior of unidirectional carbon/epoxy prepreg, focusing on the nonlinearity observed at the beginning of the stress–strain curve. Due to the material’s high viscosity, securely holding specimens during testing was challenging, prompting modifications in the gripping method to ensure reliable data. By using a longer gauge length, the slippage impact on elastic modulus measurement was minimized, resulting in good repeatability among the test samples. Experimental findings highlighted the significant interaction between fiber waviness and the viscous matrix, leading to stiffness reduction. The linear stiffness of the samples closely matched that of the fibers and remained unaffected by temperature variations. However, at higher temperatures, the epoxy matrix’s decreased viscosity caused an upward shift in the stiffness plot within the non-linear region. To support the experimental findings, a micromechanical model of prepreg tow with fiber waviness was proposed. An RVE model of periodically distributed unidirectional waved cylindrical fibers embedded within the matrix was developed to predict effective material stiffness parameters. The simulation outcomes aligned well with the uniaxial tensile test of the prepreg tow, demonstrating the proposed RVE model’s capability to accurately predict elastic properties, considering factors like fiber arrangement, waviness, and temperature.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3