Synthesis, Microstructure, and Electrical Conductivity of Eutectic Composites in MF2–RF3 (M = Ca, Sr, Ba; R = La–Nd) Systems

Author:

Buchinskaya Irina I.1ORCID,Arkharova Natalia A.1,Ivanova Anna G.1ORCID,Sorokin Nikolay I.1,Karimov Denis N.1ORCID

Affiliation:

1. Shubnikov Institute of Crystallography, Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 59 Leninsky Prospekt, Moscow 119333, Russia

Abstract

Multiphase fluoride polycrystalline eutectics pRF3 × qMF2 forming in the MF2–RF3 (M = Ca, Sr, Ba; R = La–Nd) binary systems were synthesized by the directional crystallization technique from a melt. The phase composition, morphology, and temperature dependences of fluorine ionic conductivity in fabricated composites were studied in detail. The pRF3 × qMF2 (p and q are the mole percentages of components) eutectic composites consist of both extremely saturated fluorite-type structure M1−xRxF2+x solid solutions and the tysonite-type R1−yMyF3−y ones. Microsized growth blocks with a fine lamellar structure are typical for synthesized composites. The thinnest (from 3 μm) and longest lamellae are observed in the 68LaF3 × 32BaF2 composition. The ionic conductivity values of pRF3 × qMF2 composites are determined by the phase composition, practically do not depend on their morphological features, and reach 10−3–10−2 S/cm at 500 K (with an ion transport activation enthalpy of about 0.5–0.6 eV). Crystallized eutectics are superior to any single-phase M1−xRxF2+x solid solutions and ball-milling R1−yMyF3−y nanoceramics in terms of ion-conducting properties. These fluoride materials represent an alternative to widely applied tysonite-type ceramic composites in various electrochemical devices and require further in-depth studies.

Funder

State assignment of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences

Shared Research Center of the FSRC «Crystallography and Photonics» RAS

RSF

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3