Dynamic Analysis of Functionally Graded Porous (FGP) Elliptic Cylindrical Shell Based on Jacobi Polynomials Ritz Method

Author:

Lu J.1,Yang Q.1,Meng Z.2,Yang K.1,Xu W.1,Chiu C.1

Affiliation:

1. College of Mechanical & Electrical Engineering, Zaozhuang University, Zaozhuang 277160, China

2. School of Mechanical Engineering, Shandong University, Jinan 250100, China

Abstract

The lightweight of structure is widely applied in industrial applications, and the conflict between both dynamic stability and structural lightweight is still prominent. In this paper, functionally graded porous (FGP) elliptic cylindrical shells and panels with general boundary conditions are analyzed to explore the effect of the FGP on dynamic performance. First, the FGP elliptic cylindrical shell and panel models are established. Therein, three kinds of porosity distribution are considered, including nonsymmetric, symmetric, and uniform distributions. The energy expressions of the FGP elliptic cylindrical shell and panel are established by the first-order shear deformation theory (FSDT). To simulate various boundary conditions, the artificial spring boundary technique is employed in this study. Then, the Jacobi orthogonal polynomials and Fourier series are adopted to express the admissible displacements. Finally, the accuracy of this model is verified by comparing it with open literature and ABAQUS software. Results show that the variations of the boundary conditions, linear springs, thickness ratio, and porosity have close relation with the dynamic performance of the structure by affecting the stiffness of the structure.

Funder

Natural Science Foundation of Shandong Province

Key Project of Shandong Province

Project of Shandong Province Higher Educational Science and Technology Program

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3