Interactions between Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals and Surfaces: An Ellipsometric Study

Author:

Gong Xiaoyu1,Ismail Md Farhad1ORCID,Boluk Yaman1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada

Abstract

The tailoring of the surface properties of cellulose nanocrystals (CNCs) to meet various requirements in environmental, food, and material areas has always been of great interest. In this study, the surface chemistry of CNCs was noncovalently modified by cetyltrimethylammonium bromide (CTAB), followed by characterizations and an investigation into its application as a coating material for interfacial interaction over various substrates. Due to the CTAB modification, the surface charge of the CNCs was neutralized, resulting in an increased size of each nanocrystal at the aqueous status and the aggregated microfibers when dried up. The CTAB modification not only decreased the crystallinity of the samples from 48.57% to 9.12%, but also reasonably hydrophobized the CNCs and decreased their total surface energy. Finally, the adsorption behavior of the CNCs and CTAB-CNCs over nonionic, anionic, and cationic polymers was investigated by ellipsometry. Based on the thickness of the CNC and CTAB-CNC layers over 2-Hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), and polyethyleneimine (PEI), we proposed that the adsorption behavior was overall influenced by electrostatic interaction, hydrogen bonding, and van der Waals forces, and the thickness of the adsorbed layers could be impacted by both the surface charge and the size of the crystals.

Funder

Alberta Innovates and Alberta Bio Future (ABF) Biomaterials Pursuit Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3